
Representations and properties of generalized Ar statistics, coherent states and Robertson

uncertainty relations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 889

(http://iopscience.iop.org/0305-4470/39/4/010)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 889–901 doi:10.1088/0305-4470/39/4/010

Representations and properties of generalized Ar

statistics, coherent states and Robertson uncertainty
relations

M Daoud
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Abstract
The generalization of Ar statistics, including bosonic and fermionic sectors, is
performed by means of the so-called Jacobson generators. The corresponding
Fock spaces are constructed. The Bargmann representations are also
considered. For the bosonic Ar statistics, two inequivalent Bargmann
realizations are developed. The first (resp. second) realization induces, in
a natural way, coherent states recognized as Gazeau–Klauder (resp. Klauder–
Perelomov) ones. In the fermionic case, the Bargamnn realization leads to the
Klauder–Perelomov coherent states. For each considered realization, the inner
product of two analytic functions is defined with respect to a measure explicitly
computed. The Jacobson generators are realized as differential operators. It is
shown that the obtained coherent states minimize the Robertson–Schrödinger
uncertainty relation.

PACS numbers: 02.30.Gp, 03.65.−w, 03.65.Sq

1. Introduction and motivations

Quantum statistics, different from the Bose and Fermi ones, have attracted due attention
in the literature [1–13] and various versions have been formulated. For example, in two
space dimensions, one can have a one parameter family of statistics (anyons) interpolating
between bosons and fermions [4]. On the other hand, in three and higher space dimensions the
parastatistics, developed by Green [1], constitute the natural extension of the usual Fermi and
Bose statistics. The interest in these exotic statistics is mainly motivated by their promising
applications in the theories of fractional quantum Hall effect [7, 8], anyonic superconductivity
[9] and black hole statistics [10]. In the Green generalization of conventional Bose and
Fermi statistics, the paraboson or parafermion algebra is generated by r pairs of creation and
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annihilation operators
(
A+

i , A−
i

)
(i = 1, 2, . . . , r) satisfying the trilinear relations (which

replace the standard bilinear commutation or anti-commutation relations)

[[
A+

i , A
−
j

]
±, A−

k

]] = −2δikA
−
j ,

[[
A+

i , A
+
j

]
±, A−

k

]] = −2δikA
+
j ∓ 2δjkA

+
i ,[[

A−
i , A−

j

]
±, A−]] = 0,

where, as usual, [x, y]± = xy ± yx and the sign + (resp. −) refer to parabosons (resp.
parafermions). It is interesting to mention that the para-Fermi relations are associated with
the orthogonal Lie algebra so(2r + 1) = Br [14] and the para-Bose statistics are connected
to the orthosymplectic superalgebra osp(1/2r) = B(0, r) [15]. Recently, in view of this
connection between Lie algebras and super-algebras, a classification of generalized quantum
statistics has been derived in the framework of the classical Lie algebras Ar, Br, Cr and Dr

[6, 16, 17].
In this context we shall be interested, in the present paper, in the generalized class

of statistics associated with the classical Lie algebra Ar . The general class of these
statistics is defined with the help of the notion of Lie triple systems and the so-called
Jacobson operators [18]. The latter operators are known to be closely related to the
description, initiated by N Jacobson, of Lie algebras by a minimal set of generators and
relations instead of to the well-known Chevally description. The second facet of this work
concerns the Bargmann representation associated with generalized Ar statistics. The latter
is frequently important in the analysis of quantum field theoretic systems and in connection
with path integral methods. Coherent states for Ar statistics system emerges naturally in the
Bargmann realization. Coherent states for systems obeying unconventional statistics have
been extensively investigated in recent years. One may quote coherent states associated with
statistics developed in the context of quantum algebras like q-bosons [19] and k-fermions [20].
Coherent states for paraparticles have also been constructed: parabose coherent states have
been proposed in [21] and parafermi ones are given in [3, 22]. All these states appear to be
quantum states closest to the classical ones. The strongest qualitative measure of differences in
the behaviour of quantum and classical properties is expressed by the Schrodinger–Robertson
uncertainty principle [23, 24] (see also [25, 26]). As we are interested in the generalized Ar

statistics, it is natural to ask if the sets of coherent states, which emerge in the construction
of analytical representations, minimize the Robertson–Shrödinger uncertainty relation. This
matter will constitute the last part of this work.

The paper is organized as follows. Generalized quantum statistics are introduced from
a set of Jacobson generators (defined in section 2) satisfying certain triple relations. This
generalization includes two fundamental sectors. A fermionic one reproducing the Ar

statistics introduced in [6]. The second sector is of a bosonic type. For each sector, we
give the associated Fock space. A Hamiltonian is derived in terms of the Jacobson generators
identified with creation and annihilation operators. In section 3, the first analytic realization
of the Fock space for the bosonic Ar statistics is performed. This realization generates the
so-called Gazeau–Klauder coherent states [27]. The second realization, presented in section 4,
leads to the Klauder–Perelomov coherent states [28, 29]. We also realize analytically the Fock
space related to the fermionic Ar statistics. In this case, we show that the Jacobson generators
act on an over-complete set of coherent states similar to the Klauder–Perelomov ones labelling
the complex projective spaces CPr . Differential actions of the Jacobson generators for each
obtained realization are given. In the last section, we show that quantum states, realizing
analytically the vector states of Ar statistics, minimize the uncertainty principle. In other
words, they minimize the Robertson–Schrödinger uncertainty relation. Some concluding
remarks close this work.
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2. The generalized Ar statistics

In this section, we introduce the definitions of the Jacobson operators and the generalized
Ar statistics viewed as Lie triple systems. We give the corresponding Fock space and a
Hamiltonian describing a quantum system obeying generalized Ar statistics.

2.1. Jacobson generators

To begin, let us recall the definition of Lie triple systems. A vector space with trilinear
composition [x, y, z] is called a Lie triple system if the following identities are satisfied:

[x, x, x] = 0, [x, y, z] + [y, z, x] + [z, x, y] = 0,

[x, y, [u, v,w]] = [[x, y, u], v, w] + [u, [x, y, v], w] + [u, v, [x, y,w]].

In accordance with this definition, we will introduce the generalized Ar statistics as a Lie triple
system. To this end, we consider the set of 2r operators x+

i and x−
i (i = 1, 2, . . . , r). Inspired

by the para-Fermi case [1] and the example of Ar statistics [6, 16], these 2r operators should
satisfy certain conditions and relations. First, the operators x+

i are mutually commuting. A
similar statement holds for the operators x−

i . They also satisfy the following triple relations:

[[
x+

i , x−
j

]
, x+

k

]] = −εδjkx
+
i − εδij x

+
k (1)[[

x+
i , x−

j

]
, x−

k

]] = εδikx
−
j + εδij x

−
k , (2)

where ε ∈ R \ {0}. The algebra A (defined by means of the generators x±
i and relations (1)

and (2)) is closed under the ternary operation [x, y, z] = [[x, y], z] and define a Lie triple
system. Note that for ε = −1, the algebra A reduces to one defining the Ar statistics discussed
in [6]. The elements x±

i are referred to as Jacobson generators which will later be identified
with creation and annihilation operators of a quantum system obeying generalized Ar statistics.

We redefine the generators of the algebra A as a±
i = x±

i√|ε| . The triple relations (1) and (2) may
be rewritten as

[[
a+

i , a−
j

]
, a+

k

]] = −sδjka
+
i − sδij a

+
k , (3)[[

a+
i , a−

j

]
, a−

k

]] = sδika
−
j + sδij a

−
k , (4)

where s = ε
|ε| is the sign of the parameter ε and

[
a+

i , a+
j

] = [
a−

i , a−
j

] = 0. This
redefinition is more convenient for our investigation, in particular in determining the irreducible
representation associated with the algebra A. As we will see in what follows, the sign of the
parameter ε play an important role in the representation of the algebra A and consequently,
one can obtain different microscopic and macroscopic statistical properties of the quantum
system under consideration.

2.2. The Hamiltonian

To characterize a quantum gas obeying the generalized Ar statistics, we have to specify a
Hamiltonian for the system. The operators a±

i define creation and annihilation operators for
a quantum mechanical system, described by a Hamiltonian H, when the Heisenberg equation
of motion [

H, a±
i

] = ±eia
±
i (5)
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is fulfilled. The quantities ei are the energies of the modes i = 1, 2, . . . , r . One can verify
that if |E〉 is an eigenstate with energy E, a±

i |E〉 are eigenvectors of H with energies E ± ei .
In this respect, the operators a±

i can be interpreted as creating or annihilating particles. To
solve the consistency equation (5), we write the Hamiltonian H as

H =
r∑

i=1

eihi (6)

which seems to be a simple sum of ‘free’ (non-interacting) Hamiltonians hi . However, note
that, in the quantum system under consideration, the statistical interactions occur and are
encoded in the triple commutation relations (3) and (4). Using the structure relations of the
algebra A, the solution of the Heisenberg condition (5) is given by

hi = s

r + 1

[
(r + 1)

[
a−

i , a+
i

] −
r∑

j=1

[
a−

j , a+
j

]]
+ c, (7)

where the constant c will be defined later such that the ground state (vacuum) of the Hamiltonian
H has zero energy.

2.3. Fock representations

We now consider a Hilbertian representation of the algebra A. Let F be the Hilbert–Fock
space on which the generators of A act. Since, the algebra A is spanned by r pairs of Jacobson
generators, it is natural to assume that the Fock space is given by

F = ⊕∞
n=0Hn, (8)

where Hn ≡ {|n1, n2, . . . , nr〉, ni ∈ N,
∑r

i=1 ni = n > 0
}

and H0 ≡ C. The action of a±
i on

F is defined by

a±
i |n1, . . . , ni, . . . , nr〉 =

√
Fi(n1, . . . , ni ± 1, . . . , nr)|n1, . . . , ni ± 1, . . . , nr〉 (9)

extended linearly, where the functions Fi are called the structure functions and are to be non-
negatives so that all states are well defined. To determine the expressions of the functions Fi

in terms of the quantum numbers n1, n2, . . . , nr , let us first assume that a−
i |0, 0, . . . , 0〉 = 0

for all i = 1, 2, . . . , r . This implies that the functions Fi satisfy

Fi(n1, . . . , ni, . . . , nr) = niGi(n1, . . . , ni, . . . , nr), (10)

in a factorized form where the new functions Gi are defined such that Gi(n1, . . . , ni =
0, . . . , nr) �= 0 for i = 1, 2, . . . , r . Furthermore, since the Jacobson operators satisfy the
trilinear relations (3) and (4), these functions should be affine in the quantum numbers ni :

Gi(n1, . . . , ni, . . . , nr) = k0 + (k1n1 + k2n2 + · · · + krnr). (11)

Finally, using the relations
[
a+

i , a+
j

] = 0 and
[[

a+
i , a−

i

]
, a+

i

]] = −2sa+
i , one obtains ki = kj

and ki = s, respectively. For convenience, we set k0 = k − 1+s
2 assumed to be a non-vanishing

integer. The actions of the Jacobson generators on the states spanning the Hilbert–Fock space
F are now given by

a−
i |n1, . . . , ni, . . . , nr〉 =

√
ni(k0 + s(n1 + n2 + · · · + nr))|n1, . . . , ni − 1, . . . , nr〉, (12)

a+
i |n1, . . . , ni, . . . , nr〉 =

√
(ni + 1)(k0 + s(n1 + n2 + · · · + nr + 1))|n1, . . . , ni + 1, . . . , nr〉.

(13)
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The dimension of the irreducible representation space F is determined by the condition

k0 + s(n1 + n2 + · · · + nr) > 0. (14)

It depends on the sign of the parameter s. It is clear that for s = 1, the Fock space F
is infinite dimensional. However, for s = −1, there exist a finite number of basis states
satisfying the condition n1 + n2 + · · · + nr � k − 1. The dimension is given, in this case, by
(k−1+r)!
(k−1)!r! . This is exactly the dimension of the Fock representation of Ar statistics discussed
in [6]. This condition–restriction is closely related to the so-called generalized exclusion
Pauli principle according to which no more than k − 1 particles can be accommodated in the
same quantum state. In this sense, for s = −1, the generalized Ar quantum statistics give
statistics of fermionic behaviour. They will be termed here fermionic Ar statistics and those
corresponding to s = 1 will be named bosonic Ar statistics.

Setting c = r
r+1 sk0 in (7) and using equation (6) together with the actions of creation and

annihilation operators (12), (13), one has

H |n1, . . . , ni, . . . , nr〉 =
r∑

i=1

eini |n1, . . . , ni, . . . , nr〉. (15)

It is remarkable that, for s = −1, the spectrum of H is similar (with a slight modification)
to energy eigenvalues of the Ar Calogero model (see, for instance, equation (1.2) in [30]).
The latter describe the dynamical model containing r + 1 particles on a line with long range
interactions and provide a microscopic realization of fractional statistics [13, 31].

Finally, we point out one interesting property of the generalized Ar statistics. Introduce

the operators b±
i = a±

i√
k

for i = 1, 2, . . . , r and consider k very large. From equations (12) and
(13), we obtain

b−
i |n1, . . . , ni, . . . , nr〉 ≈ √

ni |n1, . . . , ni − 1, . . . , nr〉, (16)

b+
i |n1, . . . , ni, . . . , nr〉 ≈

√
ni + 1|n1, . . . , ni + 1, . . . , nr〉. (17)

In this limit, the generalized Ar statistics (fermionic and bosonic ones) coincide with the Bose
statistics and the Jacobson operators reduce to Bose ones (creation and annihilation operators
of harmonic oscillators).

Besides the Fock representation discussed in this section, it is interesting to look for
analytical realizations of the space representation associated with the Fock representations of
the generalized Ar statistics. These realizations constitute a useful analytical tool in connection
with variational and path integral methods to describe the quantum dynamics of the system
described by the Hamiltonian H.

3. Bargmann realization and Gazeau–Klauder coherent states

This section is devoted to a realization à la Bargmann using a suitably defined Hilbert space of
the entire analytic functions associated with the bosonic Ar statistics introduced above. In this
first analytic realization, the Jacobson creation operators are realized as simple multiplication
by some complex variables. As by product, this realization generates, in a natural way, the
Gazeau–Klauder coherent states associated with a quantum mechanical system described by
the Hamiltonian given by (6) and (7) for the particular case s = 1. To begin with, we realize
the vectors |k; n1, . . . , nr〉 as powers of complex variables ω1, . . . , ωr on which the Jacobson
creation operators a+

i act as multiplication by ωi

|k; n1, . . . , nr〉 −→ Ck;n1,...,nr
ω

n1
1 · · · ωnr

r , (18)
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where the set of coefficients Ck;n1,...,nr
occurring in the last expression will be determined in

what follows. Equation (13) leads to the following recursion relation:

Ck;n1,...,ni ,...,nr
= ((ni + 1)(k + n1 + · · · + ni + · · · + nr))

1
2 Ck;n1,...,ni+1,...,nr

. (19)

Solving this equation, we obtain

Ck;n1,...,ni ,...,nr
=

[
(k − 1 + n − ni)!

ni!(k − 1 + n)!

] 1
2

Ck;n1,...,0,...,nr
, (20)

where n = n1 + n2 + · · · + nr . We repeat this procedure for all i = 1, 2, . . . , r and setting
Ck;0,...,0 = 1, we obtain

Ck;n1,...,ni ,...,nr
=

[
(k − 1)!

n1! · · · nr !(k − 1 + n)!

] 1
2

. (21)

If we define the operators Ni

(�= a+
i a−

i

)
such that

Ni |k; n1, . . . , ni . . . , nr〉 = ni |k; n1, . . . , ni . . . , nr〉, (22)

it is easy to see that the operators Ni act in this differential realization as

Ni −→ ωi

∂

∂ωi

. (23)

To define the differential actions of the annihilation operators a−
i , we use their actions on the

Fock space (equation 12) together with equation (23). One has

a−
i −→ k

∂

∂ωi

+ ωi

∂2

∂2ωi

+
∂

∂ωi

∑
i �=j

ωj

∂

∂ωj

. (24)

A general vector

|ψ〉 =
∑

n1,...,nr

ψn1,...,nr
|k; n1, . . . , nr〉 (25)

in the Fock space F now is realized as follows:

ψ(ω1, . . . , ωr) =
∑

n1,...,nr

ψn1,...,nr
Ck;n1,...,nr

ω
n1
1 · · · ωnr

r , (26)

a.e. We define the inner product in this realization in the following form:

〈ψ ′|ψ〉 =
∫

d2ω1 · · · d2ωrK(k;ω1, . . . , ωr)ψ
′�(ω1, . . . , ωr)ψ(ω1, . . . , ωr), (27)

where d2ωi ≡ dReωi dImωi , where K is to be determined and the integration extends over
the entire complex space Cr . To compute the density function K, appearing in the definition
of the inner product (27), we choose |ψ〉(resp. |ψ ′〉) to be the vector |k; n1, . . . , nr〉 (resp.
|k; n′

1, . . . , n
′
r〉). We also assume that K depends only on ρi = |ωi | for i = 1, . . . , r . This

assumption reflects the isotropic condition used in the moment problems. Then, it is a simple
matter of computation to show that the function K(k; ρ1, . . . , ρr) should satisfy the integral
equation

(2π)r
∫ ∞

0
· · ·

∫ ∞

0
dρ1 · · · dρrK(k; ρ1, . . . , ρr)|ρ1|2n1+1 · · · |ρr |2nr +1 = n1! · · · nr !(k − 1 + n)!

(k − 1)!
.

(28)

A solution of this equation exists [32] (see a nice proof in [33]) in terms of the Bessel function

K(k;R) = 2

πr(k − 1)!
Rk−rKk−r (2R), (29)
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where R2 = ρ2
1 + · · · + ρ2

r . Note that the analytic function ψ(ω1, . . . , ωr) can be viewed as
the inner product of the ket |ψ〉 with a bra 〈k;ω�

1, . . . , ω
�
r | labelled by the complex conjugate

of the variables ω1, . . . , ωr

ψ(ω1, . . . , ωr) = N 〈k;ω�
1, . . . , ω

�
r |ψ〉, (30)

where N ≡ N (|ω1|, . . . , |ωr |) stands for a normalization constant of the states |k;ω1, . . . , ωr〉
to be adjusted later. As a particular case, if we take |ψ〉 = |k; n1, . . . , nr〉, we get

〈k;ω�
1, . . . , ω

�
r |k; n1, . . . , nr〉 = N−1Ck;n1,...,nr

ω
n1
1 · · ·ωnr

r . (31)

The last equation implies

|k;ω1, . . . , ωr〉 = N−1
∞∑

n1=0

· · ·
∞∑

nr=0

[
(k − 1)!

n1! · · · nr !(k − 1 + n)!

] 1
2

ω
n1
1 · · · ωnr

r , (32)

where the normalization constant N is

N 2(|ω1|, . . . , |ωr |) =
∞∑

n1=0

· · ·
∞∑

nr=0

(k − 1)!

n1! · · · nr !(k − 1 + n)!
|ω1|2n1 · · · |ωr |2nr . (33)

The states |k;ω1, . . . , ωr〉 are not orthogonal and constitute an over-complete set with respect
to the measure given by (29). It is also interesting to remark that they are eigenvectors of the
Jacobson operators a−

i with the eigenvalue ωi . In this sense, the states |k;ω1, . . . , ωr〉 can be
considered as Gazeau–Klauder coherent states associated with a quantum mechanical system
whose Hamiltonian is given by (6) and (7).

4. Bargmann realization and Klauder–Perelomov coherent states

4.1. Bosonic Ar statistics

Here, we shall consider the second analytic realization associated with bosonic Ar statistics.
We consider the complex domain D = {(z1, z2, . . . , zr ) : |z1|2 + |z2|2 + · · · + |zr |2 < 10}. The
reason for this condition will be clarified in the sequel of this subsection. In this realization,
the annihilation operators a−

i are represented as derivation with respect to the complex
variables zi

a−
i −→ ∂

∂zi

; (34)

and the basis elements of the Fock space are realized as follows:

|k; n1, . . . , nr〉 −→ Ck;n1,...,nr
z
n1
1 · · · znr

r . (35)

Using the action of the annihilation operators on the Fock space F and the correspondence
(35), one obtains the following recursion formula√

k − 1 + n1 + · · · + ni + · · · + nrCk;n1,...,ni−1,...,nr
= √

niCk;n1,...,ni ,...,nr
, (36)

which can be solved in a similar manner to the one used above (equation 19) and setting
Ck;0,...,0 = 1. We have

Ck;n1,...,ni ,...,nr
=

[
(k − 1 + n)!

n1! · · · nr !(k − 1)!

] 1
2

, (37)

where n = n1 + n2 + · · · + nr . Having the expression of the coefficients C, one can determine
the differential action of the Jacobson creation operators. Indeed, using the actions of the
generators a+

i on the Fock space and the triple relations (3) and (4), we show that

a+
i −→ kzi + zi

r∑
j=1

zj

∂

∂zj

; (38)
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that is, the Jacobson generators act as first-order linear differential operators. Here also, we
realize a general vector of the Fock space F (s = 1)

|φ〉 =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nr=0

φn1,n2,...,nr
|k; n1, n2, . . . , nr〉

as

φ(z1, z2, . . . , zr ) =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nr=0

φn1,n2,...,nr
Ck;n1,n2,...,nr

z
n1
1 z

n2
2 · · · znr

r , (39)

a.e. The inner product of the two functions φ and φ′ is now defined as follows:

〈φ′|φ〉 =
∫∫

· · ·
∫

d2z1 d2z2 · · · d2zr
(k; z1, z2, . . . , zr )φ
′�(z1, z2, . . . , zr )φ(z1, z2, . . . , zr ),

(40)

where the integration is carried out in the complex domain D. The computation of the
integration measure 
, assumed to be isotropic, can be performed by choosing |φ〉 =
|k; n1, n2, . . . , nr〉 and |φ′〉 = |k; n′

1, n
′
2, . . . , n

′
r〉. It follows that the measure 
 satisfy

the following moment equation:∫∫
· · ·

∫
d�1 d�2 · · · d�r
(k; �1, �2, . . . , �r)�

2n1+1
1 �

2n2+1
2 · · · �2nr +1

r = n1!n2! · · · nr !(k − 1)!

(2π)r(k − 1 + n)!
,

(41)

where n = n1 + n2 + · · · + nr and �i = |zi |. To find the isotropic function satisfying
equation (41), we use the following result∫ 1

0
t
n1
1 dt1

∫ 1−t1

0
t
n2
2 dt2 · · ·

∫ 1−t1−t2−···−tr−1

0
tnr

r (1 − t1 − t2 − · · · − tr )
k−r−1 dtr

= n1!n2! · · · nr !(k − 1)!

(k − 1 + n)!(k − r)(k − r + 1) · · · (k − 1)
(42)

which can easily be verified. The measure is then given by


(k; �1, �2, . . . , �r) = π−r (k − r)(k − r + 1) · · · (k − 1)
[
1 − (

�2
1 + �2

2 + · · · + �2
r

)]k−r−1
.

(43)

One can write the function φ(z1, z2, . . . , zr ) as the product of the state |φ〉 with some ket
|k; z∗

1, z
∗
2, . . . , z

∗
r 〉 labelled by the complex conjugate of the variables z1, z2, . . . , zr

φ(z1, z2, . . . , zr ) = N 〈k; z∗
1, z

∗
2, . . . , z

∗
r |φ〉. (44)

Taking |φ〉 = |k; n1, n2, . . . , nr〉, we have

|k; z1, z2, . . . , zr〉 = N−1
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nr=0

[
(k − 1 + n)!

n1! · · · nr !(k − 1)!

] 1
2

z
n1
1 z

n2
2 · · · znr

r . (45)

The expansion (45) converges when |z1|2 + |z2|2 + · · · + |zr |2 < 1. In other words, the complex
variables z1, z2, . . . , zr should be in the complex domain D defined above. The normalization
constant in (45) is given by

N = (1 − |z1|2 − |z2|2 − · · · − |zr |2) k
2 . (46)

The states (45) are continuous in the labelling, constitute an over-complete set with respect
to the measure given by (43) and then are coherent in the Klauder–Perelomov sense. It
comes that the quantum states of the bosonic Ar statistics system admit two non-equivalent
realizations.
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4.2. Fermionic Ar statistics

Now, we construct the analytic realization of the irreducible representation related to fermionic
Ar statistics (s = −1) characterized by the so-called generalized Pauli principle. First, note
that, since the Fock space is of finite dimension, the Jacobson creation operators cannot be
represented as a multiplication by some complex variable. Unlike the bosonic Ar statistics,
only one realization can be made in this case. It corresponds to one in which the generators
a−

i act as

a−
i −→ ∂

∂ζi

(47)

in the space of the polynomials of the form Ck;n1,n2,...,nr
ζ

n1
1 ζ

n2
2 · · · ζ nr

r in the r-dimensional
space Cr of complex lines (ζ1, ζ2, . . . , ζr ) with

|k; n1, n2, . . . , nr〉 −→ Ck;n1,n2,...,nr
ζ

n1
1 ζ

n2
2 · · · ζ nr

r , (48)

a.e. The coefficients in (48) satisfy the recurrence formula√
niCk;n1,n2,...,ni ,...,nr

= √
k − nCk;n1,n2,...,ni−1,...,nr

, (49)

where n = n1 + n2 + · · · + nr . The solution, for all i = 1, 2, . . . , r , is given by

Ck;n1,n2,...,nr
=

[
(k − 1)!

n1!n2! · · · nr !(k − 1 − r)

] 1
2

. (50)

The creation generators a+
i act in this realization as

a−
i −→ (k − 1)ζi − ζi

r∑
j=1

ζj

∂

∂ζi

, (51)

i.e., first-order differential operators.
As in the previous cases, there exists a measure σ(k; ζ1, ζ2, . . . , ζr ) by means of which

one can define the inner product between two arbitrary functions. To compute this measure,
we use the orthogonality of the Fock states |k; n1, n2, . . . , nr〉 which gives∫ ∫

· · ·
∫

d2ζ1 d2ζ2 · · · d2ζrσ (k; ζ1, ζ2, . . . , ζr )Ck;n1,n2,...,nr

×Ck;n′
1,n

′
2,...,n

′
r
ζ

n1
1 ζ

n′
1

1 ζ
n2
2 ζ

n′
2

2 · · · ζ nr

r ζ
n′

r
r = δn1,n

′
1
δn2,n

′
2
· · · δnr ,n′

r
. (52)

Setting ζi = |ζi | eiθ and assuming the isotropy of the measure, the relation (52) becomes∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0
dx1 dx2 · · · dxrµ(k, x1, x2, . . . , xr )x

n1
1 x

n2
2 · · · xnr

r

= n1!n2! · · · nr !(k − 1 − n)!

(k − 1)!
, (53)

where µ ≡ πrσ and xi = |ζi |2. Using the Mellin inverse transform [32], one obtains

µ(k, x1, x2, . . . , xr ) = (k − 1 + r)!

(k − 1)!
(1 + x1 + x2 + · · · + xr)

−(k+r). (54)

Any function f (ζ1, ζ2, . . . , ζr ) can be written in the following form:

f (ζ1, ζ2, . . . , ζr ) = N 〈k; ζ ∗
1 , ζ ∗

2 , . . . , ζ ∗
r |f 〉, (55)

where |f 〉 is a generic element of the Fock space and the normalization constant is given by

N
(|ζ1|2, |ζ2|2, . . . , |ζr |2

) = (
1 + |ζ1|2 + |ζ2|2 + · · · + |ζr |2

)− k−1
2 . (56)

It is interesting to note that the states |k; ζ1, ζ2, . . . , ζr〉 are nothing but the coherent states
parameterizing the complex projective space CPr . They were used in the description of
quantum Hall systems in higher dimension complex projective spaces [34]. In this respect,
we believe that the generalized quantum Ar statistics can be linked to this subject.
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5. Robertson–Schrödinger uncertainty relation

The main aim of this section is to show that the coherent states, derived in the previous section,
minimize the Robertson–Schrödinger uncertainty relation [23, 24]. The states minimizing this
relation are called minimum uncertainty states (or intelligent states) [25, 26]. To this end,
we recall that for 2r observables (Hermitian operators) (X1, X2, . . . , X2r ) ≡ X, Robertson
established the following uncertainty relation for the matrix dispersion σ :

det σ(X) � det C(X), (57)

where σαβ = 1
2 〈XαXβ + XβXα〉 − 〈XαXβ〉, (α = 1, 2, . . . , 2r), and C is the antisymmetric

matrix of the mean commutators Cαβ = − i
2 [Xα,Xβ ]. Here 〈O〉 stands for the mean value

of the operator O in a given quantum state which is generally a mixed state. For r = 1,
inequality (57) coincides with the Schrödinger uncertainty relation which gives the Heisenberg
uncertainty relation when the term σ12 is vanishing.

5.1. Gazeau–Klauder coherent states

To show that the Gazeau–Klauder coherent states (32) minimize the uncertainty relation (57),
i.e. det σ(X) = det C(X), let us define the Hermitian operators (X1, X2, . . . , X2r ) as

Xi = 1

2

(
a+

i + a−
i

)
, Xi+r = i

2

(
a+

i − a−
i

)
(58)

in terms of the creation and annihilation operators of the quantum system described by the
Hamiltonian H.

The matrix A ≡ (
a−

1 , a−
2 , . . . , a−

r , a+
1 , a+

2 , . . . , a+
r

)
is related to X as X = UA

U = 1

2

(
1r 1r

−i1r i1r

)

where 1r is r × r unit matrix. It follows that both matrices σ(X) and C(X) can be expressed
in terms of matrices σ(A) and C(A):

σ(X) = Uσ(A)UT C(X) = UC(A)UT . (59)

The eigenvalue equations a−
i |ω1, ω2, . . . , ωr〉 = ωi |ω1, ω2, . . . , ωr〉 provide us with the

following relations between the matrix elements of σ(A) and C(A):

σij = 0 Cij = 0 (60)

σi+r,j+r = 0 Ci+r,j+r = 0 (61)

σi,j+r = iCi,j+r σi+r,j = −iCi+r,j . (62)

The last relations give det σ(A) = det C(A) which in view of (59) (and the non-degeneracy
of U, det U = ( i

2 )
r
) leads to the needed equality in the Robertson–Schrödinger uncertainty

relation (57), namely det σ(X) = det C(X).

5.2. Klauder–Perelomov coherent states

Now, it remains to show that the Klauder–Perelomov, for bosonic and fermionic Ar statistics,
minimize the Robertson–Schrödinger uncertainty relation. We first write the coherent states
(45) and (55) as resulting from the action of some displacement operator on the lowest weight
state (the vacuum). Indeed, by a more or less complicated calculus, one can show that coherent
states (45) coincide with the vectors

D(η1, η2, . . . , ηr)|0, 0, . . . , 0〉 = D(ηr) · · ·D(η2)D(η1)|0, 0, . . . , 0〉 (63)
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where the displacement operators D(ηi) are defined by

D(η1) = exp
(
η1a

+
1 − η1a

−
1

)
, D(ηi) = exp

(
ηi

[
a−

i−1, a
+
i

] − ηi

[
a−

i , a+
i−1

])
(64)

for i = 2, 3, . . . , r . The complex parameters occurring in equations (63) and (64) are given
in terms of variables labelling the coherent states (45) as tanh2|η1| = |z1|2 + |z2|2 + · · · + |zr |2,
tan2 |ηi | = |zi−1|−2

(|zi |2 + |zi+1|2 + · · · + |zr |2
)

for i = 2, 3, . . . , r and ηi

|ηi | = zi

|zi | .
Similarly, the coherent states obtained for fermionic Ar statistics derived from expression

(55) can be written as

D(η′
1, η

′
2, . . . , η

′
r )|0, 0, . . . , 0〉 = D(η′

r ) · · ·D(η′
2)D(η′

1)|0, 0, . . . , 0〉, (65)

where the unitary operators D(η′
i ) are defined as follows:

D(η′
1) = exp

(
η′

1a
+
1 − η′

1a
−
1

)
, D(η′

i ) = exp
(
η′

i

[
a+

i , a−
i−1

] − η′
i

[
a+

i−1, a
−
i

])
. (66)

The complex variables ζi , labelling the fermionic Ar statistics states, are related to ones,
parameterizing the displacement operators (66), as follows: ζi = Z1Z2 · · · Zi , (i =
1, 2, . . . , r) with Zj = η′

j

|η′
j | tan|η′

j | cos|η′
j+1| for j = 1, 2, . . . , r − 1 and Zr = η′

r

|η′
r | tan |η′

r |. To

prove that the states (63) and (65) minimize the Robertson–Schrödinger uncertainty relation,
we shall show that they are eigenstates of the linear combination of the Jacobson generators
A−

i ≡ A−
i (u, v) = uij a

−
j +vij a

+
j (summation over repeated indices). To simplify our notation,

we denote by |coh, s = ±1〉 the coherent states for bosonic (s = 1) and fermionic (s = −1)

Ar statistics. Using the triple relation commutation, one gets

D†a+
i D = xij a

−
j + yij a

+
j + zijk

[
a−

j , a+
k

]
, (67)

where D is given by (64) (resp. (66)) for bosonic Ar statistics (resp. fermionic Ar statistics).
The complex parameters xij , yij and zijk are functions of the variables labelling the coherent
states (The expressions of xij , yij and zijk can be obtained by using the trilinear relations (3)
and (4) coupled with Baker–Campbell–Hausdorff relation). From (67), one obtains

D†A−
i D|0, 0, . . . , 0〉 = [

(uij xjk + vij y
∗
jk)a

−
k + (uij yjk + vij x

∗
jk)a

+
j

+ (uij zjkl + vij z
∗
jkl)

[
a−

k , a+
l

]]|0, 0, . . . , 0〉.
Since a−

j |0, 0, . . . , 0〉 = 0 and
[
a−

k , a+
l

]|0, 0, . . . , 0〉 = (
k + s−1

2

)
δkl|0, 0, . . . , 0〉, the coherent

states (63) and (65) are eigenstates of A−
i if the r×r matrices u, v, x and y satisfy the condition

uy + vx∗ = 0 and we have

A−
i |coh, s = ±1〉 =

(
k +

s − 1

2

) ∑
j l

(uij zjll + vij z
∗
j ll)|coh, s = ±1〉. (68)

In the last step of our proof, we consider the quadrature components Xi and Xi+r , defined
previously, which can be related to the operators A ≡ (

A−
1 , A−

2 , . . . , A−
r , A+

1, A
+
2, . . . , A

+
r

)
as

follows:

X = U�−1A, (69)

where the matrix � (assumed to be invertible) is defined as

� =
(

u v

v∗ u∗

)

and the matrix U is given above. Using the transformation (69) one can easily verify the
following expressions of dispersion and covariance matrices σ(X) and C(X),

σ(X) = (U�−1)σ (A)(U�−1)T , C(X) = (U�−1)C(A)(U�−1)T , (70)
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in terms of the dispersion and covariance of the A’s operators. According to the eigenvalue
equations (68), the matrix elements of σ(A) and C(A) are related by relations similar to
these given by (60), (61) and (62). Then, one has det σ(A) = det C(A) which implies
det σ(X) = det C(X). Finally, we conclude that the Klauder–Perelomov coherent states,
arising from the Bargmann realizations of bosonic and fermionic Ar statistics, minimize the
Robertson–Shrödinger uncertainty relation and they are, in this respect, intelligent.

6. Conclusion

This paper is devoted to the generalized Ar statistics. We have studied the associated Fock
representations. We have obtained the Fock spaces associated with bosonic (s = 1) and
fermionic (s = −1) Ar statistics. In the limit k −→ ∞ (k index labelling the irreducible
Fock representations), bosonic as well as fermionic Ar statistics reduce to the standard
Bose statistics. The Ar statistics system becomes a collection of ordinary bosons and the
Jacobson generators coincide with creation and annihilation operators of conventional degrees
of freedom. We have developed the Bargmann realizations of the Fock spaces and determined
the differential actions of the Jacobson generators. We have shown that the so-called Klauder–
Perelomov and Gazeau–Klauder coherent states emerge, in a natural way, in these realizations.
The measures, by means of which we define the inner product of two analytical functions for
each considered realization, are computed. They turn out to be the measures with respect
to which the coherent states constitute over-complete sets. We point out that the existence
of two distinct Bargmann representations, studied in sections 3 and 4, arises from choosing
either the creation or the annihilation operator having a simple form similar to the ordinary
Bose case; indeed in the latter the two coincide and there is only one Bargmann realization,
but they are necessarily distinct in the case under discussion. We shown also that all obtained
coherent states are intelligent. In other words, the states give the minimum of the Robertson–
Schrödinger uncertainty relation. As first continuation, it would be interesting to study a
complete classification of intelligent states associated with Ar statistics. Furthermore, the
results and tools presented in this paper can be extended to quantum statistics associated with
other classical Lie algebras and super-algebras. Finally, we believe that the generalized Ar

statistics can be applied in the study of the quantum Hall effect in higher dimension spaces
[34, 35]. We hope to report on this subject in a forthcoming work.
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